12 research outputs found

    Elevation Uncertainty in Coastal Inundation Hazard Assessments

    Get PDF

    Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure

    Get PDF
    Elevation data are critical for assessments of sea-level rise (SLR) and coastal flooding exposure. Previous research has demonstrated that the quality of data used in elevation-based assessments must be well understood and applied to properly model potential impacts. The cumulative vertical uncertainty of the input elevation data substantially controls the minimum increments of SLR and the minimum planning horizons that can be effectively used in assessments. For regional, continental, or global assessments, several digital elevation models (DEMs) are available for the required topographic information to project potential impacts of increased coastal water levels, whether a simple inundation model is used or a more complex process-based or probabilistic model is employed. When properly characterized, the vertical accuracy of the DEM can be used to report assessment results with the uncertainty stated in terms of a specific confidence level or likelihood category. An accuracy evaluation has been conducted of global DEMs to quantify their inherent vertical uncertainty to demonstrate how accuracy information should be considered when planning and implementing a SLR or coastal flooding assessment. The evaluation approach includes comparison of the DEMs with high-accuracy geodetic control points as the independent reference data over a variety of coastal relief settings. The global DEMs evaluated include SRTM, ASTER GDEM, ALOS World 3D, TanDEM-X, NASADEM, and MERIT. High-resolution, high-accuracy DEM sources, such as airborne lidar and stereo imagery, are also included to give context to the results from the global DEMs. The accuracy characterization results show that current global DEMs are not adequate for high confidence mapping of exposure to fine increments (<1 m) of SLR or with shorter planning horizons (<100 years) and thus they should not be used for such mapping, but they are suitable for general delineation of low elevation coastal zones. In addition to the best practice of rigorous accounting for vertical uncertainty, other recommended procedures are presented for delineation of different types of impact areas (marine and groundwater inundation) and use of regional relative SLR scenarios. The requirement remains for a freely available, high-accuracy, high-resolution global elevation model that supports quantitative SLR and coastal inundation assessments at high confidence levels

    Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    Get PDF
    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m

    Effects of sea-level rise on barrier island groundwater system dynamics – ecohydrological implications

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecohydrology 7 (2014): 1064–1071, doi:10.1002/eco.1442.We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA

    Evaluating Coastal Landscape Response to Sea-Level Rise in the Northeastern United States - Approach and Methods

    Get PDF
    The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-level-rise scenarios used as model inputs are generated by using multiple sources of information, including Coupled Model Intercomparison Project Phase 5 models following representative concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A Bayesian network is used to develop a predictive coastal response model that integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for interactions with coastal geomorphology as well as the corresponding ecological and societal systems it supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and need for improved data or fundamental understanding. This report describes the methods used to produce predictions, including information on input datasets; the modeling approach; model outputs; data-quality-control procedures; and information on how to access the data and metadata online
    corecore